Chapitre 8	
	QUADRILATÈRES

1 Reconnaître des quadrilatères particuliers

1.1 Les quadrilatères

Définition 56 (quadrilatère)

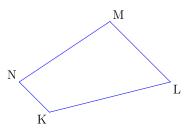
Un quadrilatère est un polygone qui a quatre côtés.

Notation

On nomme un quadrilatère en citant les lettres de ses sommets dans l'ordre des côtés.

Exemple

- On peut nommer ce quadrilatère KLMN, LMNK, mais pas KMLN.
- Les segments [KL] et [KN] sont deux côtés ...
- Les segments [KL] et [MN] sont deux côtés ...
- Le segment [KM] est une ...



Propriété 31 (quadrilatère)

Un quadrilatère possède quatre côtés, quatre sommets et deux diagonales.

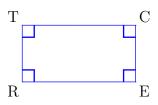
1.2 Le rectangle

Définition 57 (rectangle)

Un rectangle est un quadrilatère qui possède quatre angles droits.

Exemple

Le codage du quadrilatère CERT montre quatre angles droits, donc c'est un $\ \dots$

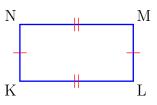


Propriété 32 (côtés opposés d'un rectangle)

Si un quadrilatère est un rectangle alors deux côtés opposés ont la même longueur.

Exemple

Le codage du quadrilatère KLMN montre que KL=MN et KN=LM.



Propriété 33 (diagonales d'un rectangle)

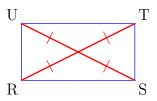
Si un quadrilatère est un rectangle alors ses diagonales se coupent en leur milieu et ont la même mesure.

Propriété 34 (diagonales d'un rectangle)

Si un quadrilatère a des diagonales de même mesure et qui se coupent en leur milieu alors c'est un rectangle.

Exemple

Les diagonales du quadrilatère RSTU sont de même longueur et ce coupent en leur milieu, donc RSTU est un \dots



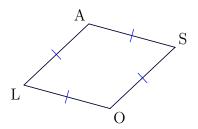
1.3 Le losange

Définition 58 (losange)

Un losange est un quadrilatère qui possède quatre côtés de même longueur.

Exemple

Le quadrilatère LOSA possède quatre côtés de même longueur. C'est donc un $\ \dots$



Propriété 35 (côtés opposés d'un losange)

Si un quadrilatère est un losange alors ses côtés opposés sont parallèles.

Propriété 36 (angles opposés d'un losange)

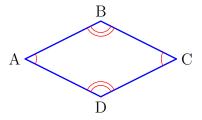
Si un quadrilatère est un losange alors ses angles opposés sont de même mesure.

Exemple

Le quadrilatère ABCD est un losange. Ses angles opposés sont de même mesure.

$$-\widehat{\ldots} = \widehat{\ldots}$$

$$-\widehat{\ldots}=\widehat{\ldots}$$



Propriété 37 (diagonales d'un losange)

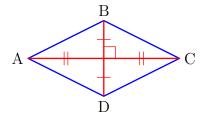
Si un quadrilatère est un losange alors ses diagonales sont perpendiculaires et se coupent en leur milieu.

Propriété 38 (diagonales d'un losange)

Si un quadrilatère a ses diagonales qui sont perpendiculaires et qui se coupent en leur milieu alors c'est un losange.

Exemple

D'après le codage, les diagonales du quadrilatère ABCD sont perpendiculaires et se coupent en leur milieu, donc ABCD est un losange.



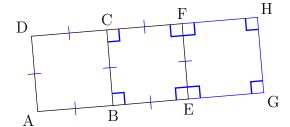
1.4 Le carré

Définition 59 (carré)

Un carré est un quadrilatère qui possède quatre côtés de même longueur et quatre angles droits.

Exemple

- 1. Le quadrilatère ABCD est-il un carré?
- 2. Même question pour BEFC.
- 3. Même question pour EGHF.



Réponses:

- 1. Le quadrilatère ABCD est-il un carré?
 - Le codage du quadrilatère ABCD n'indique pas si ses angles sont droits.
 - Je ne peux donc pas affirmer que ABCD est un carré.
- 2. Le quadrilatère BEFC est-il un carré?

Le codage de la figure nous donne suffisamment d'informations pour réaliser un chaînon déductif.

Je sais que :	Propriété :	Conclusion:
Les quatre côtés $[BE]$, $[EF]$, $[FC]$ et $[CB]$ ont Les quatre angles \widehat{CBE} , \widehat{BEF} , \widehat{EFC} et \widehat{FCB} sont		BEFC est un

3. Le quadrilatère EFGH est-il un carré?

Le codage du quadrilatère EGHF n'indique pas si les quatre côtés ont la même longueur. Je ne peux donc pas être sûr que que EGHF est un carré.

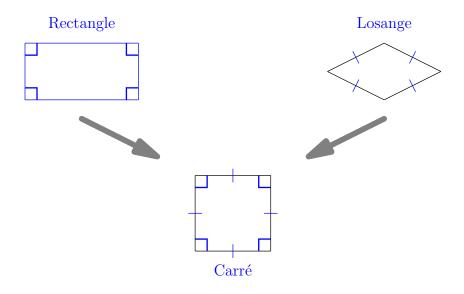
Remarque

Un carré est un rectangle dont les quatre côtés sont égaux.

Un carré est un losange dont les quatre angles sont droits.

Propriété 39 (carré, losange et rectangle)

Un carré est à la fois un rectangle et un losange.



Propriété 40 (diagonales d'un carré)

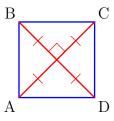
Si un quadrilatère est un carré alors ses diagonales sont perpendiculaires, de même longueur et se coupent en leur milieu.

Propriété 41 (diagonales d'un carré)

Si un quadrilatère a des diagonales de même longueur, qui se coupent en leur milieu et qui sont perpendiculaires alors c'est un carré.

Exemple

Le quadrilatère ABCD possède des diagonales de même longueur, qui se coupent en leur milieu et qui sont perpendiculaires. C'est donc un carré.



Exemple

On considère le quadrilatère AZUR.

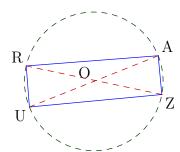
AU et RZ sont des diamètres du cercle de centre O.

- 1. Réaliser un schéma à l'aide de la règle et du compas.
- 2. Démontrer que AZUR est un rectangle.

Réponses

- 1. Ci-contre, un schéma possible.
- 2. Les diagonales du quadrilatère AZUR sont ... et Comme ... et ... sont des diamètres d'un même cercle :

 $\dots = \dots$



Par construction, les deux diagonales qui sont des diamètres du cercles ont le même milieu.

À l'aide d'un chainon déductif :

Je sais que :	Propriété :	Conclusion:
$\dots = \dots$ $[\dots]$ et $[\dots]$ ont le même milieu.		AZUR est un

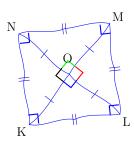
Exemple

Soit O l'intersection des diagonales d'un carré KLMN.

- 1. Que peut-on dire des angles \widehat{KOL} , \widehat{LOM} , \widehat{MON} et \widehat{NOK} ?
- 2. Que peut-on dire des triangles KOL, LOM, MON et NOK?
- 3. Tracer et coder une figure.

Réponse

- 1. KLMN est un carré, donc ses diagonales sont ... Donc, les angles \widehat{KOL} , \widehat{LOM} , \widehat{MON} et \widehat{NOK} sont des ...
- 2. Les triangles KOL, LOM, MON et NOK sont donc ...
- 3. Voici la figure tracée « à main levée ».



2 Constructions particulières

2.1 Construire un losange connaissant les longueurs de ses diagonales

Exemple

Écrire un programme de construction du los ange RENA, connaissant les longueurs de ses deux diagonales :

 $-RN = 4 \,\mathrm{cm}$.

 $-EA = 3 \,\mathrm{cm}.$

Puis construire un losange RENA.

Réponse

1. Tracer un segment [RN] de longueur Appeler O son milieu.

2. Tracer la droite perpendiculaire à (RN) passant par le point ...

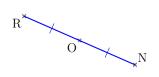
3. Sur cette droite, placer les points E et A de part et d'autres de O et tels que O soit le milieu de [EA].

On a alors :

$$OE = OA = \frac{EA}{2} = \frac{\dots}{2} = \dots$$

4. Tracer le losange RENA.

Voici les 4 étapes correspondant à ce programme de construction du losange RENA.

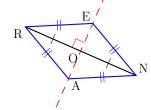


Étape 1

Étape 2



Étape 3



Étape 4

2.2 Construire un losange connaissant la longueur d'un côté et un angle

Exemple

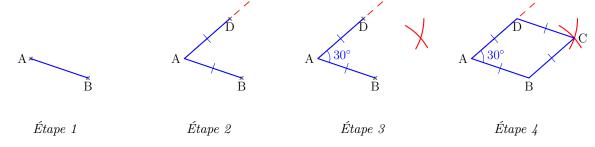
Construire un losange dont une diagonale mesure 4 cm et dont un angle mesure 30°.

Réponse

Construisons un losange ABCD avec AB = 4 cm et $\widehat{BAD} = 30^{\circ}$.

- 1. Tracer un segment [AB] de longueur 4 cm.
- 2. Tracer une demi-droite [AD] avec $\widehat{BAD} = 30^{\circ}$ et AD = 4 cm.
- 3. Tracer un arc de cercle de centre B et de rayon 4 cm. Tracer un arc de cercle de centre D et de rayon 4 cm.
- 4. Placer le point C à l'intersection de deux arcs de cercle. Tracer le losange ABCD.

Voici les 4 étapes correspondant au programme de construction du losange ABCD.



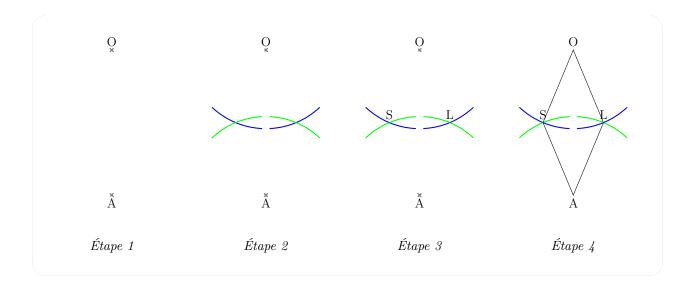
2.3 Construire un losange connaissant les longueurs d'un côté et d'une diagonale

Exemple

Construire un losange LOSA de tel que $LO=2,6\,\mathrm{cm}$ et tel que $OA=4,8\,\mathrm{cm}$ en indiquant votre programme de construction.

Réponse

- 1. Placer deux points O et A distants de 4,8 cm.
- 2. Tracer un cercle de centre O et de rayon LO (en bleu). Tracer un cercle de centre A et de rayon LO (en vert).
- 3. Placer les points L et S aux intersections de ces deux cercles.
- 4. Tracer le losange LOSA.



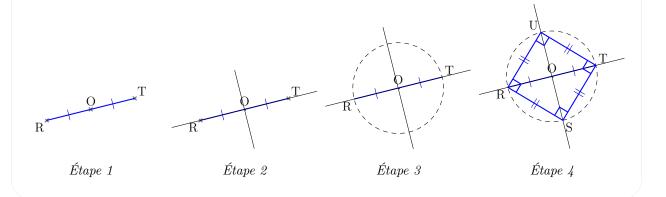
2.4 Construire un carré connaissant sa diagonale

Exemple

Construire un carré RSTU de diagonale $RT=3\,\mathrm{cm}$ en indiquant votre programme de construction.

Réponse

- 1. Tracer un segment RT et placer son milieu O (étape 1).
- 2. Tracer la droite perpendiculaire à (RT) passant par O (étape 2).
- 3. Tracer le cercle de centre ${\cal O}$ et de rayon ${\cal RO}$ (étape 3).
- 4. Placer les points S et U et tracer le carré RSTU (étape 4).



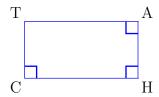
2.5 Démonstration d'une propriété

Propriété 42 (quadrilatère avec trois angles droits)

Si un quadrilatère a trois angles droits alors c'est un rectangle.

Démonstration

Démontrons qu'un quadrilatère CHAT possédant trois angles droits est un rectangle.



Le codage indique que $(CT) \perp (CH)$ et $(AH) \perp (CH)$.

À l'aide d'un chaînon déductif, montrons que les droites (CT) et (\ldots) sont parallèles.

Je sais que :	Propriété :	Conclusion:
$(AT) \perp (AH)$		(CII) / /(
$(CH) \perp (AH)$		$(CH)//(\ldots)$

Je sais maintenant que (CH)//(AT) et je peux utiliser cette connaissance dans un second chaînon déductif, afin de montrer que $(CT) \perp (TA)$.

Je sais que :	Propriété :	Conclusion:
(CH)//(TA)		
$(TC) \perp (CH)$		$(CT) \perp (\ldots)$

Je sais maintenant que $(CT) \perp (\dots)$ donc \widehat{CTA} est un angle \dots

Le quadrilatère CHAT possède donc quatre angles droits : c'est un ...