RELATIONS ENTRE LES ANGLES

1 Angles complémentaires

Définition 52 (angles complémentaires)

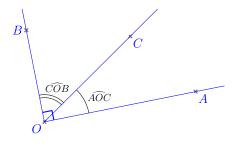
Deux angles sont **complémentaires** lorsque la somme de leurs mesures est égale à 90°.

Exercice 18.1

Dans la figure ci-contre, les angles \widehat{AOC} et \widehat{COB} sont adjacents et complémentaires.

Le codage nous indique que :

$$\widehat{AOC} + \widehat{COB} = \widehat{AOB} = \dots$$

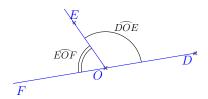


2 Angles supplémentaires

Définition 53 (angles supplémentaires)

Deux angles sont supplémentaires lorsque la somme de leurs mesures est égale à 180°.

Exercice 18.2



Dans la figure ci-contre, les angles \widehat{DOE} et \widehat{EOF} sont supplémentaires.

Nous avons donc:

$$\widehat{DOE} + \widehat{EOF} = \dots$$

3 Angles opposés par le sommet

Définition 54 (angles opposés par le sommet)

Deux angles sont dits opposés par le sommet si :

- ils ont le même sommet;
- ils sont formés par deux droites sécantes;
- les côtés de l'un sont les prolongements des côtés de l'autre.

Propriété 57 (mesures de deux angles opposés)

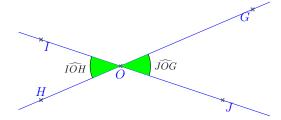
Deux angles opposés par le sommet ont la même mesure.

Exercice 18.3

Dans la figure ci-contre, les angles \widehat{IOH} et \widehat{JOG} sont adjacents et opposés.

Ils ont donc la même mesure :

$$\widehat{IOH} = \widehat{\dots}$$



4 Angles correspondants

Définition 55 (sécante commune)

Si une droite (Δ) coupe deux droites (d_1) et (d_2) alors la droite (Δ) est appelée **sécante commune** à (d_1) et (d_2) .

Définition 56 (angles correspondants)

Soient deux droites du plan (d_1) , (d_2) .

Soit (Δ) une droite sécante commune à ces deux droites.

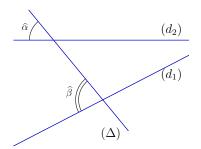
Deux angles sont **correspondants** si les conditions suivantes sont réunies :

- ils sont situés du même côté de la sécante commune (Δ) ;
- l'un de ces angles est à l'intérieur des droites (d_1) et (d_2) , l'autre non.

Exercice 18.4

Dans la figure ci-contre :

- La droite (Δ) est une ... aux droites (d_1) et (d_2) .
- Les angles $\widehat{\alpha}$ et $\widehat{\beta}$ sont ...



5 Angles alternes-internes

Définition 57 (angles alternes-internes)

Soient (d_1) et (d_2) deux droites du plan.

Soit (Δ) une sécante commune à ces deux droites.

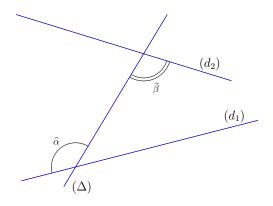
Deux angles sont alternes-internes si les trois conditions suivantes sont réunies :

- les deux angles sont situés de part et d'autre de la sécante commune Δ .
- les deux angles sont à l'intérieur des droites (d_1) et (d_2) ;
- les deux angles ne sont pas adjacents.

Exercice 18.5

Dans la figure ci-contre :

- La droite (Δ) est une ... aux droites (d_1) et (d_2) .
- Les angles $\widehat{\alpha}$ et $\widehat{\beta}$ sont ...



Remarque

Dans la figure ci-dessus, les $\widehat{\alpha}$ et $\widehat{\beta}$ sont :

- alternes : ils sont situés de part et d'autre de la sécante (Δ) ;
- internes : ils sont situés à l'intérieur des droites (d_1) et (d_2) .

6 Caractérisation angulaire du parallélisme

6.1 Avec deux angles correspondants

Propriété 58 (droites parallèles et angles correspondants)

Soient deux droites du plan (d_1) et (d_2) .

Soit (Δ) une sécante commune à ces deux droites.

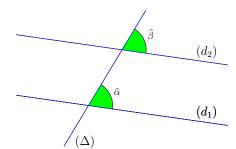
Si les droites (d_1) et (d_2) sont parallèles, alors deux angles correspondants de ces deux droites avec la droite (Δ) ont la même mesure.

Exercice 18.6

Dans la figure ci-contre :

- La droite (Δ) est une sécante commune aux droites (d_1) et (d_2) .
- On donne : $(d_1) //(d_2)$.

D'après la propriété précédente, les angles correspondants $\widehat{\alpha}$ et $\widehat{\beta}$ ont ...



Propriété 59 (angles correspondants de même mesure)

Soient deux droites du plan (d_1) et (d_2) .

Soit (Δ) une sécante commune à ces deux droites.

Si deux angles correspondants ont la même mesure, alors les droites (d_1) et (d_2) sont parallèles.

6.2 Avec deux angles alternes-internes

Propriété 60 (droites parallèles et angles alternes-internes)

Soient deux droites du plan (d_1) et (d_2) .

Soit (Δ) une sécante commune à ces deux droites.

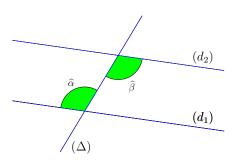
Si les droites (d_1) et (d_2) sont parallèles, alors deux angles alternes-internes de ces deux droites avec la droite (Δ) ont la même mesure.

Exercice 18.7

Dans la figure ci-contre :

- La droite (Δ) est une sécante commune aux droites (d_1) et (d_2).
- On donne : $(d_1) //(d_2)$.

D'après la propriété précédente, les angles alternesinternes $\widehat{\alpha}$ et $\widehat{\beta}$ ont ...



Propriété 61 (angles alternes-internes de même mesure)

Soient deux droites du plan (d_1) et (d_2) .

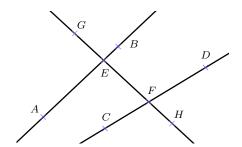
 (Δ) une sécante commune à ces deux droites.

Si deux angles alternes-internes ont la même mesure, alors les droites (d_1) et (d_2) sont parallèles.

Exercice 18.8

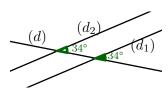
Trouvez ci-contre, si possible:

- 1. Deux angles supplémentaires : . . .
- 2. Deux angles complémentaires : . . .
- 3. Deux angles adjacents : . . .
- 4. Deux angles alternes-internes : . . .
- 5. Deux angles correspondants : . . .



Exercice 18.9

Les droites (d_1) et (d_2) sont-elles parallèles? Justifier votre réponse.



Réponse

La droite (d) est une sécante commune aux droites ... et ... et ont observe que deux angles correspondants ont la même mesure, soit ...

Propriété : si dans cette situation deux angles correspondants ont la même mesure, alors les droites sont parallèles.

Conclusion: les droites ... et ... sont ...

7 Somme des angles dans un triangle

Définition 58 (somme des angles d'un triangle)

La somme des angles d'un triangle est égale à 180°.

Considérons un triangle quelconque ABC et démontrons que la somme de ses trois angles est égale à 180° .

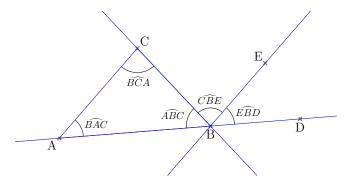
Démonstration

Dans un triangle ABC, la somme des angles s'écrit :

$$\widehat{ABC} + \widehat{BCA} + \widehat{BAC}$$
.

Plaçons un point (D) sur la droite (AB) tel que $B \in (AD)$.

Traçons ensuite la droite (BE) parallèle à (BC), en plaçant le point E comme ci-dessous :



- Première étape : montrons que les angles \widehat{BAC} et \widehat{EBD} ont la même mesure.
 - On sait que :
 - * La droite (BD) est une sécante commune à (AC) et (BE).
 - * Les droites (AC)et(BE) sont parallèles.
 - * Les angles \widehat{BAC} et \widehat{DBE} sont correspondants.
 - <u>Propriété</u> : si deux droites sont parallèles, alors deux angles correspondants de ces deux droites avec une sécante commune ont la même mesure.
 - Conclusion : $\widehat{BAC} = \widehat{EBD}$.
- Seconde étape : montrons que les angles \widehat{BCA} et \widehat{CBE} ont la même mesure.
 - On sait que:
 - $\ast\,$ La droite (BC) est une sécante commune à (AC) et (BD).
 - \ast Les droites (AC) et (BE) sont parallèles.
 - * Les angles \widehat{BCA} et \widehat{CBE} sont alternes-internes.
 - Propriété : si deux droites sont parallèles, alors deux angles alternes-internes de ces deux droites avec une sécante commune ont la même mesure.

$$-$$
 Conclusion : $\widehat{BCA} = \widehat{CBE}$.

- Étape finale :

Les angles $\widehat{ABC},\,\widehat{CBE}$ et \widehat{EBD} forment un angle plat. Donc :

$$\widehat{ABC} + \widehat{CBE} + \widehat{EBD} = 180^{\circ}.$$

De plus nous avons montré que :

$$\begin{cases} \widehat{BAC} = \widehat{EBD} \\ \widehat{BCA} = \widehat{CBE} \end{cases}$$

Donc:

$$\widehat{ABC} + \widehat{BCA} + \widehat{BAC} = 180^{\circ}.$$

Nous avons ainsi montré que la somme des mesures des angles du triangle ABC mesure 180° .

Exercice 18.10

- 1. Tracez à main levée un triangle XYZ en indiquant $\widehat{XYZ}=58^\circ, \ \widehat{YZX}=42^\circ$ et $\widehat{ZXY}=81^\circ.$
- 2. Ce triangle est-il constructible?

Réponse

1. Traçons ce triangle à main levée :

. . .

2. Je calcule la somme des angles du triangle XYZ:

$$\widehat{XYZ} + \widehat{YZX} + \widehat{ZXY} = 58 + 42 + 81 = \dots$$

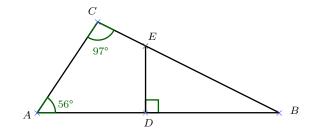
Or, pour qu'un triangle soit constructible, la somme de ses angles doit être égale à 180°

Donc le triangle XYZ ...

Exercice 18.11

En justifiant et en détaillant :

- 1. Calculer \widehat{DBE} .
- 2. Calculer \widehat{BED} .
- 3. Calculer \widehat{CED} .



Réponse

1. La sonne des angles du triangle ABC mesure 180° , donc :

$$\widehat{DBE} = 180 - \widehat{BAC} - \widehat{ACB}$$

$$\widehat{DBE} = 180 - 56 - 97 = \dots$$

L'angle \widehat{DBE} mesure ...

2. La sonne des angles du triangle BDE mesure $180^{\circ},$ donc :

$$\widehat{BED} = 180 - \widehat{EDB} - \widehat{DBE}$$

$$\widehat{BED} = \dots$$

L'angle \widehat{BED} mesure ...

3. Les angles \widehat{BED} et \widehat{CED} sont supplémentaires, donc :

$$\widehat{CED} = 180 - \widehat{DBE}$$

$$\widehat{CED} = \dots$$

L'angle \widehat{CED} mesure