

1 Agrandir ou réduire une figure

Propriété 38

Les dimensions d'une figure obtenue par agrandissement ou par réduction sont proportionnelles à celles de la figure initiale.

Définition 37 (échelle d'une carte ou d'un plan)

L'échelle d'une carte ou d'un plan est le coefficient de proportionnalité entre les distances sur la carte et les distances réelles :

 $\label{eq:echelle} \text{\'echelle} = \frac{\text{distance sur la carte}}{\text{distance r\'eelle}}.$

Et donc:

distance sur la carte = distance réelle \times échelle.

Exercice 12.1

1. La distance à vol d'oiseau de Lyon à Paris est d'environ $394\,\mathrm{km}.$

Calculez la distance séparant Lyon et Paris sur une carte au $1/1\,000\,000$:

- a. en kilomètres.
- b. en centimètres.
- 2. Sur une carte à l'échelle de $1/25\,000$, Sergy et Gex sont séparées d'environ $10\,\mathrm{cm}$.

Calculez la distance réelle approximative de Sergy à Gex :

- a. en kilomètres.
- b. en centimètres.

Réponse

1. a. Je calcule la distance d_{LP} de Lyon à Paris sur la carte, en km :

distance sur la carte = distance réelle \times échelle.

$$d_{LP} \approx 394 \times \frac{1}{10000000} \approx \dots$$

b. Je convertis la distance en cm :

km	hm	dam	m	dm	$^{ m cm}$	mm

La distance sur la carte de Lyon à Paris mesure approximativement ...

2. a. Je calcule la distance réelle d_{SG} de Sergy à Gex en cm :

$$\mbox{distance r\'eelle} = \frac{\mbox{distance sur la carte}}{\mbox{\'echelle}}.$$

$$d_{SG} \approx 10 \times 25\,000 \approx \dots$$

b. Je convertis la distance en km :

km	hm	$_{ m dam}$	m	dm	cm	mm

La distance réelle de Sergy à Gex mesure approximativement ...

Propriété 39

Pour réduire une figure, on multiplie les dimensions de toutes les longueurs de cette figure par un nombre compris entre 0 et 1.

Exercice 12.2

Une grange a la forme d'un bâtiment rectangulaire de longueur $L=15\,\mathrm{m}$ et de largeur $l=6\,\mathrm{m}$. On souhaite dessiner ce rectangle à l'échelle 1/300.

- 1. Calculez les dimensions du rectangle à dessiner.
- 2. Tracez et codez ce rectangle en vrai grandeur.

Réponse

1. Je calcule en mètres les dimensions du rectangle à dessiner à l'échelle 1/300:

$$L = 15 \times \frac{1}{300} = \dots \text{ m.}$$

 $l = 6 \times \frac{1}{300} = \dots \text{ m.}$

Je convertis ces dimensions en centimètres :

km	hm	dam	m	dm	$^{ m cm}$	mm

La longueur du rectangle dessiné mesure ... cm et sa largeur ... cm.

2. Je dessine le rectangle qui représente la grange à l'échelle 1/300:

. . .

Propriété 40

Pour agrandir une figure, on multiplie les longueurs de cette figure par un nombre supérieur à 1.

Exercice 12.3

Une maquette à l'échelle 1/43 d'une Ferrari 812 GTB a pour dimension 11x5x3 (en centimètres). Quelle sont les dimensions réelles du véhicule, en mètres?

Réponse

Je calcule les dimensions réelles du véhicule en cm :

$$L = 11 \times 43 = \dots$$

$$l = 11 \times 43 = \dots$$

$$h = 3 \times 43 = \dots$$

Je convertis ces dimensions en mètres :

km	hm	dam	m	dm	cm	mm

Le véhicule a donc pour longueur ... m, pour largeur ... m et pour hauteur ... m.

2 Calculer une échelle

Exercice 12.4

Un architecte réalise un plan détaillé d'un appartement.

On observe qu'une pièce ayant la forme d'un carré de $6\,\mathrm{m}$ de côté est représentée sur le plan par un carré de côté $24\,\mathrm{cm}$.

Quelle est l'échelle du plan?

Réponse

Je convertis en mètres la distance mesurée sur la carte : $24\,\mathrm{cm} = 0.24\,\mathrm{m}.$

Je calcule l'échelle du plan :

échelle =
$$\frac{\text{distance sur la carte}}{\text{distance réelle}} = \frac{0,24}{6} = 0,04 = \frac{1}{\dots}$$
.

Le plan est à l'échelle 1/ ...